

BGWA Demonstration Vineyards trials:

Preliminary results from midrow-management trial

2020-2021 season

Vineyard trials workshop & BGWA grower activities update – *What's happening in your midrow & undervine?* Rosenvale Vineyards Cellar Door, 19th May 2021

Outline

Background & aims of this vineyard midrow-management trial

Trial design & vineyard details

□ 2020 – 2021 season overview

□ Key results from the first season of this trial

Background and aims of this midrow trial

- > Midrow soil management is an often-discussed topic among growers
- > Extend upon existing under-vine mulch trials
- Provide some quantification on common issues
- ➢ Run trial for a minimum of 3 seasons
- > Add to knowledge base to support decision making

Trial design

Midrow Trial treatments, 2020-2021, first season of trial

- A. Cereal cover-cropped^{1,2}, rotary hoed in Sep 2020, Cultivated in Nov 2020
- B. Cereal cover-cropped^{1,2}, mown & herbicided, Sep & Oct 2020
- C. Cereal cover-cropped^{1,2}, mown only, Sep, Oct & Nov 2020
- D. Volunteer Grass, ^{2,} mown-only, Sep, Oct & Nov 2020 (the 'control' for this trial)

This trial site also includes under-vine Straw & Duramulch treatment areas

2020 cover cropping¹ - durum wheat @ 120kg/sown ha, May 2020, sprayed & direct drill

2020 fertiliser inputs² - DAP @ 120kg/sown ha* with cereal cover crop (A, B, C) - DAP @ 120kg/sown ha* drilled-into grass midrows (D,E,F) - foliar ZM & multi-nutrient applied Oct 2020 - no fertigation at any stage

No inorganic nitrogen applied for last 8 years – only some compost & mulch applications

* This DAP rate equates to 10.8kg of inorganic nitrogen applied per vineyard hectare

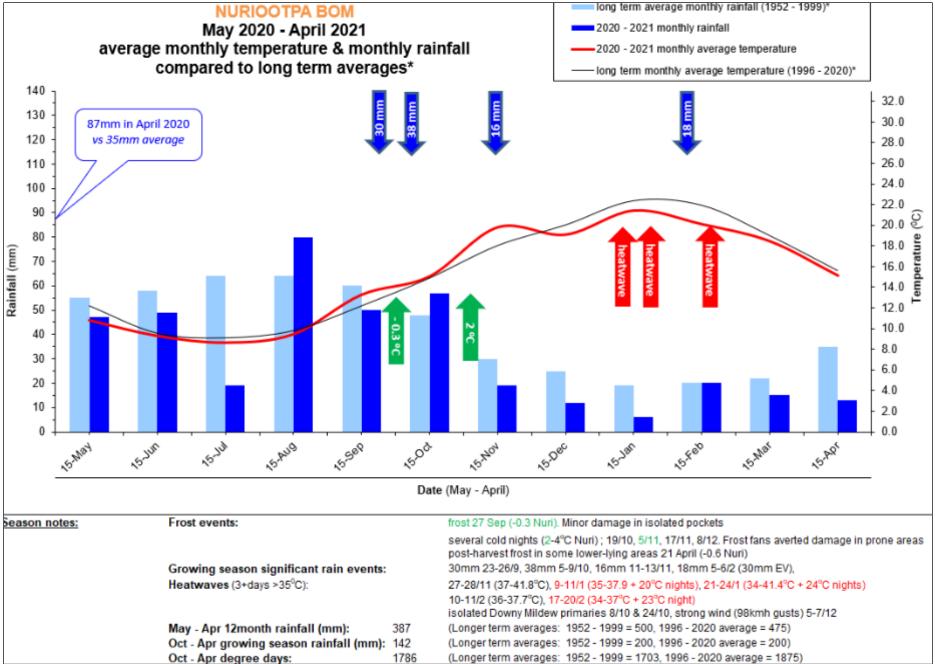
Trial vineyard details

- Rosenvale Vine Vale Vineyard, 165 Research Rd
- Shiraz, planted 2013, clone R6WV28, Paulen 1103 rootstock
- > 3.6m x 1.8m spacing, E-W rows
- single cordon spur pruned ('Rosback'), 2prs moved foliage wires, 'non-trimmed VSP'
- Drip irrigated from bore and BIL, 4L/hr per vine (0.62mm/hr)
 2020-2021 irrigation: pre-budburst irrigated, 97mm from BB to harvest, 18 irrigations
- Light-brown mixed* loamy sand (0-40cms) over red-brown sandy clay loam *NOTE: ~100mm local subsoil clay spread & surface incorporated prior to planting
- Undervine previously 'knifed' 2-3 times/yr & undervine herbicided in July
 - will undervine herbicide in future for the period of this trial
- Midrow volunteer grasses last 8yrs, mown 2-4 times/yr as required until dry
 previous history of cereal & cultivation->fescue->volunteer grasses

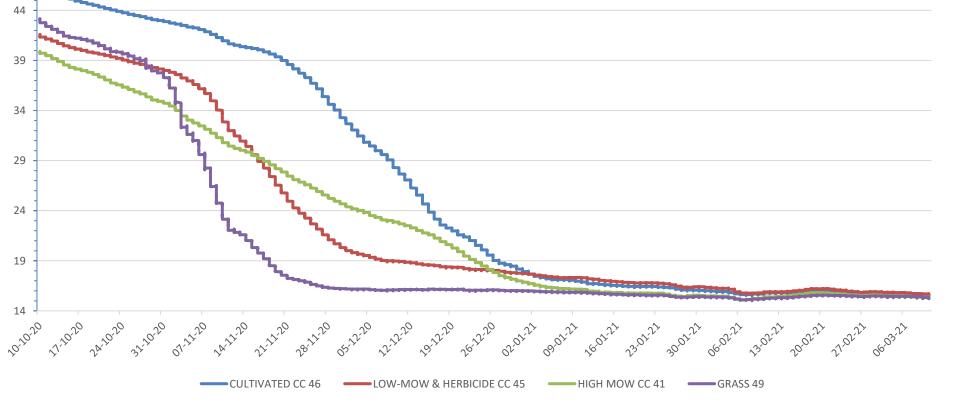
Trial measurements

Soil moisture & temp monitoring;	 vine row probes midrow probes 80cm Enviroprobes on MEA Plexus & Greenbrain system probes installed 24 August 2020
Air temperature monitoring	 screened MEA temp probes installed at 1m cordon height connected to Plexus system
Vine nutrition	- petiole tests
Soil assessment	- assess chemical, physical & biological changes in future yrs
Yield analysis	 bunch and berry weight dynamics harvest weights
Grape analysis	- Be, pH, TA, ripening rates, colour, tannin, YAN, berry sensory
Other analysis	 bud fruitfulness, pests & diseases, midrow biomass, cost-benefit
General observations	- shoot growth, canopy architecture, leaf condition

Mid-rows, 29 October 2020



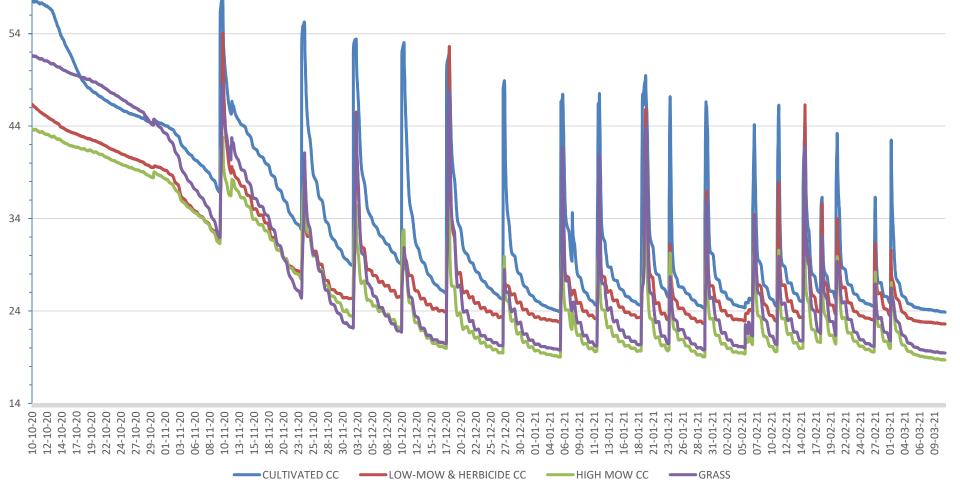
2020 – 2021 season overview



Preliminary findings ...

Mid-row soil moisture

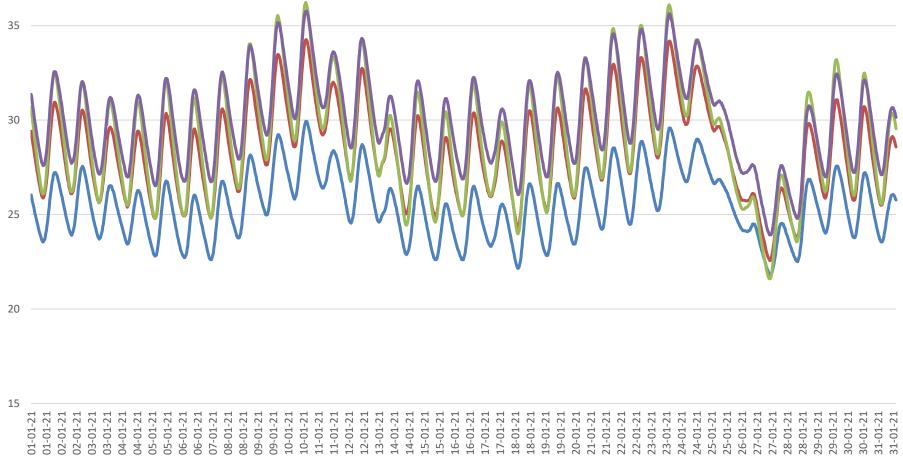
MID-ROW average soil moisture % for 20-60cm sensors for period 10 October 2020 – 10 March 2021


- drying patterns & differences were largely as expected
 - rain penetration differences will be analysed more closely in future years
- ⁴⁹ interesting differences seen between mown & herbicide midrows ... more data required
 - Note this data is *average* moisture down to 60cms ... notable differences seen at 20cms

Vine-row soil moisture

VINE-ROW average soil moisture % for 10-80cm sensors for period 10 October 2020 to 10 March 2021

- early-season moisture level differences need further investigation
 - drying trends were generally in-line with expectations
 - higher moisture levels & greater response to irrigations in cultivated align to visual growth

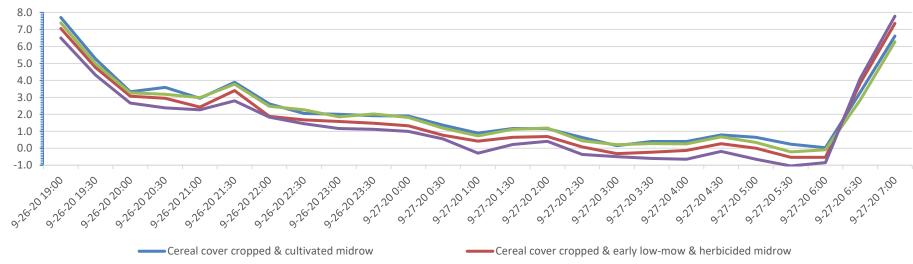

Mid-row soil temperature

Soil temperature at 20cms for period

1 January 2021 – 30 January 2021

- ⁴⁰ High-mow showed greatest diurnal differences early in the season
 - lower temps (2-6°C diff) in cultivated would be due to lower heat conductance in dry 'fluffy' soil
 - temperature differences are much smaller with increasing depth

CULTIVATED


LOW MOW & HERBICIDE

HIGH MOW

GRASS

Air temperature @ 1m cordon height

Air temperature at cordon height (1m) for different midrow treatments LOW temperature period:

7pm 26 September to 7am 27 September 2020

Cereal cover cropped & high-mow midrow

Grass midrow

Lowest temperature on 27 September 2020										
Treatment	Cereal cover cropped & cultivated midrow	Cereal cover cropped & low- mow & herbicided midrow	Cereal cover cropped & high-mow midrow	Volunteer grass & mown midrow						
Time	6:00 AM	5:30 AM	5:30 AM	5:30 AM						
Temperature (°C)	0.03	-0.53	-0.21	-0.33						
Hours duration less than 2°C (+/- 30mins)	5.5	6.5	5.5	5.5						

Vine nutrition – Petiole analysis

Treatment		Total N		К	Ca	Mg	Во	Zn*	Mn*	Iron	Moly	Na	CI	
	mg/kg	%	%	%	%	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	
mow cereal	275	1.83		minor variance										
mow & herb cereal	366	1.86	NSD		minor	NSD		NSD	NCD				NCD	
grass	30	1.72			variance NSD	NSD	NSD	NSD NSD	NSD NSD	NSD	NSD	NSD		
cultivated	2040	2.18												

* Zn and Mn values and differences likely affected by foliar ZM fertiliser applied before flowering and petiole sampling

NSD = no significant difference between treatments

Highest nitrogen in cultivated treatment

- cultivation increases the rate of mineralisation of organic matter to plant-available N
- the soils at this site have good biological function (due to history), so mineralisation was very rapid
- cultivation can lead to a rapid 'flush' in plant N uptake especially with good biology & moisture

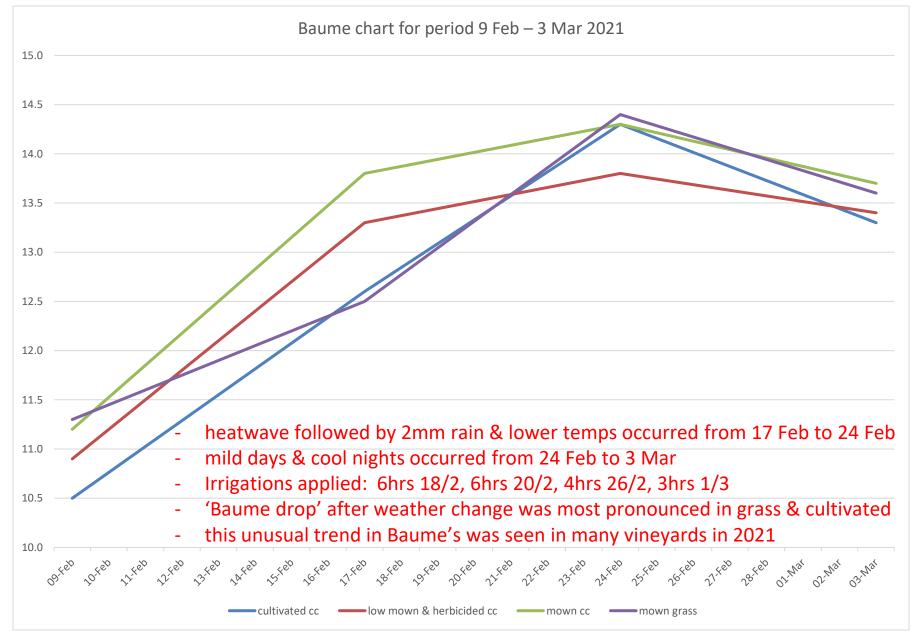
Lowest nitrogen in grass treatment ... but still on higher side by typical standards in this case

No significant differences in other elements ... but this is the first year of the trial

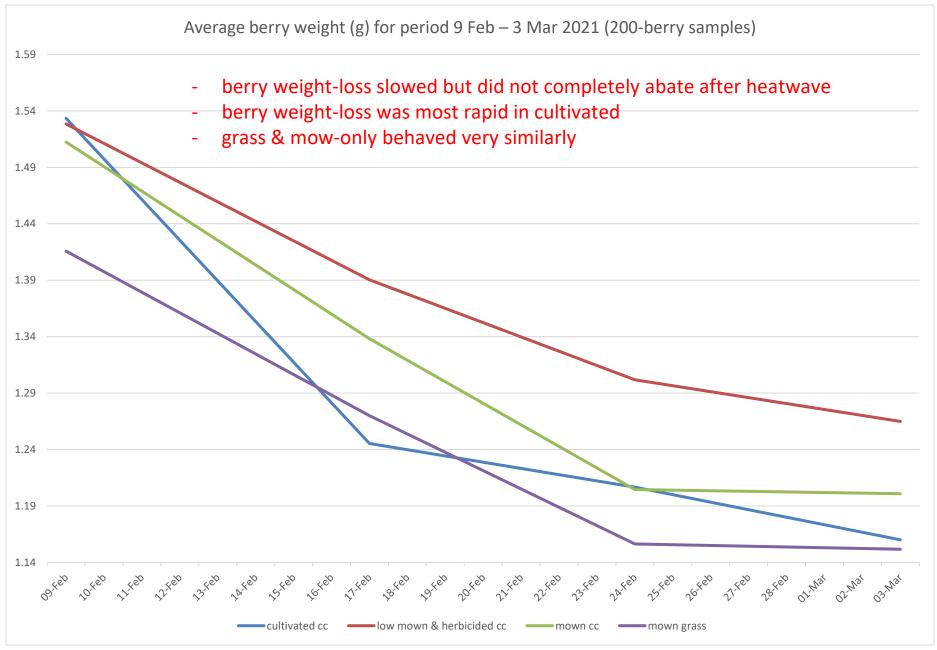
Vine canopies, 4 March 2021 (1 day before harvest)

CULTIVATED

LOW-MOW & HERBICIDED



VOLUNTEER GRASS



HIGH-MOW ONLY

Grape ripening

Berry weight

Yield data

Vineyard & Trial ID		2021								
	Harvest date	Bunch	weight	Berry	weight	Harvest yield				
		Bunch wt at harvest (g)	Diff vs Control (%)	Berry wt at harvest (g)	Diff vs Control (%)	Tonnes/ha	Diff vs Control (%)			
volunteer grasses (control)	05-Mar	119		1.15		8.40				
cover crop & cultivated		134	+13%	1.16	+1%	9.08	+8%			
cover-crop mown & herbicided		153	+29%	1.26	+10%	8.96	+7%			
cover-crop mown only		147	+24%	1.20	+4%	9.44	+12%			

> Berry weight-loss dynamics play a major role in Shiraz yields at harvest

> berry weight-loss effect on yield parameters & harvest yield were most evident in cultivated

Grape composition

		Standards analysis			Ripeni	ng rate			
Vineyard & Trial ID	Vineyard sample date	Be'	рН	ТА	Avg Baume increase per week	"Sugar Loading" Rate (average ug/g/day)	Berry tasting comments (berry sensory assessment by Chris Rogers)		
volunteer grasses (control)		13.6	3.48	4.9	2.54	0.99	similar to mown but slightly higher flavour intensity		
CCC & cultivated	3-Mar	13.3	3.54	5.4	1.21	3.11	thinner skins, lower tannin & flavour intensity & maturity		
CCC, mown & herbicided		13.4	3.53	5.0	1.27	3.27	good flavour maturity & intensity. No discernable difference between mown-		
CCC, mown only		13.7	3.51	5.2	2.54	0.99	only & herbicided		

Higher moisture deficit in grass & mow-only likely slowed Baume gain & 'sugar loading'

Grass and mow-only behaved similarly & showed similar ripening curve & berry flavour

> Fastest ripening occurred in low-mow & herbicided treatment with good berry flavour

Cultivated ripened at a good rate but showed thinner skins, less flavour & more shrivel

Full grape composition analysis via AWRI will be conducted in future years

Some other preliminary observations

Treatment	В	ud fruitfulne	SS	Primary bud necrosis			
	Bud 1	Bud 2	1 & avg	Bud 1	Bud 2	1 & avg	
Cultivated midrow	1.53	1.67	1.60	27%	23%	25%	
Grass midrow	1.47	1.66	1.56	33%	7%	20%	
Undervine straw Mulch	1.40	1.83	1.62	33%	7%	20%	

Bud fruitfulness assessment – May 2021

Elevated primary bud necrosis (PBN) in bud 2 in Cultivated treatment

- High/excessive plant nitrogen can lead to higher PBN, especially in Shiraz
- PBN can increase with rising bud position/shoot development with high vine vigour

> Higher fruitfulness in bud 2 in undervine Straw but similar across 1 & 2 in all treatments

'expression' of bud fruitfulness is also a big factor in vineyard yield (budburst %, frut-set, etc)

SUMMARY

- **Given Service For Service 1** First year of trial
- Effects of cultivation were mostly in-line with expectations, but the vines responded strongly to changes introduced by this trial vs previous practices
- Differences between treatments of midrow cereal cover-crop of High-Mow vs Low-Mow & Herbicide were relatively small, but not all in line with expectations in this first year of the trial
- Results show that midrow management practices can have a considerable effect on frost risk, vine growth, yield, ripening & grape composition
- **Midrow & undervine management practices can interact on vine performance**
- Impacts on soil attributes are yet to be assessed ...
- □ Soil & vineyard management is a 'long-game'

PROJECT SPONSORS

- Wine Australia
- BGWA
- Rosenvale Vineyards (James Rosenzweig)
- Jeffries
- Farmer Johns
- LG Vineyard Services (Lincoln Grocke)
- Tractor Tread Vineyards (Steve Schiller)
- Dorrien Estate
- VineScout (Amanda Mader)

Wine Australia

BAROSSA VALLEY

DEMONSTRATION VINEYARD OWNERS

James Rosenzweig

PROJECT CONTRIBUTORS

- Nicki Robins, BGWA
- Kirsty Waller, Dorrien Estate & TAFE
- Anna Cameron
- Chris Rogers, Rogers Viticulture
- Adam Pietsch (Farmer Johns)
- BVTG Committee
- Australian Wine Research Institute
- Measurement Engineering Australia
- > APAL Laboratories